SYLLABUS

in the discipline "Physics" for students of the first (bachelor's) level of higher education specialty 163 Biomedical Engineering educational and professional program Biomedical Engineering

1.	Name of the faculty	Faculty of Electronic and Riomedical Engineering		
2.	Level of higher education	Faculty of Electronic and Biomedical Engineering		
3.	Code and name of the	bachelor		
	specialty	163 Biomedical Engineering		
4.	Type and name of educational program	Biomedical Engineering		
5.	Code and name of the discipline	Physics		
6.	Number of ECTS credits	10		
7.	Discipline structure (distribution by types and hours of study)	1st semester 150 hours, of which: lectures 34 hours, practical 16 hours, laboratory hours 16, consultations 10 hours, independent work 74 hours 2nd semester 150 hours, of which: lectures 32 hours, practical 16 hours, laboratory 16 hours, consultations 10 hours, independent work 76 hours		
8.	The schedule of studying the discipline	1 course, 1,2 semesters		
9.	Prerequisites for studying the discipline	Knowledge of the main sections of higher mathematics, including mathematical analysis (differential and integral calculation), analytical geometry and linear algebra (actions with vectors), chemistry (atomic-molecular theory, structure of atoms and molecules).		
10.	Discipline abstract	Content module 1. Physical foundations of mechanics.		
	•	Theme1. Kinematics.		
		Theme 2. Dynamics of translational motion.		
		Theme 3. Work and energy.		
		Theme 4. Dynamics of rotational motion.		
		Theme 5. Mechanical oscillations.		
		Theme 6. Molecular kinetic energy of an ideal gas.		
		Theme 7. Classical statistical physics.		
		Theme 8. Thermodynamics		
		Content module 2. Electrostatics.		
		Theme 9Electric field in vacuum.		
		Theme 10. Electric field in dielectrics.		
		Theme 11. Conductors in an electric field.		
		Theme 12. Direct current.		
		Content module 3. Magnetic field.		
		Theme 13. Magnetic field in vacuum.		
		Theme 14. Magnetic field in matter.		
		Theme 15. The phenomenon of electromagnetic induction.		
		Theme 16. Electromagnetic field.		
		Theme 17. Electromagnetic oscillations and alternating current		
		Content module4. Waves. Optics. Elements of quantum mechanics		
	and solid state physics			
		Theme 18. Waves.		
		Theme 19. Wave optics.		
		Theme 20. Quantum optics.		
		Theme 21. Quantum mechanics.		
		Theme 22. Quantum theory of the structure of atoms and molecules.		
		Theme 23. Band theory of electrical conductivity of solids.		
		Theme 24. Electrical conductivity of metals and semiconductors.		

		35-59	2 (unsatisfactorily)	FX		
1		60-65	3 (satisfactorily)	Е		
		66-74	3 (satisfactorily)	D		
		75-89	4 (good)	С		
		90-95	5 (perfectly)	В		
		96-100	5 (perfectly)	A		
		discipline				
		Grade from the	Score on a national scale	ECTS scale score		
		The final grade is translated into national and ECTS according to the scale:				
		system. The final grade is translated into national and ECTS according to				
		semester in a 100-point system, O_{ex} - grade for the exam in a 100-point				
		by the formula: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$, where O_{sem} grade for the				
		The combined exam is used as a form of final control for the discipline "Physics". With this type of control, the final grade is calculated				
		individual calculation task and modular testing.				
	passing the exam	control activities, which include practical classes, laboratory work,				
	according to each task for	O_{sem} is calculated as the sum of grades for different types of classes and				
13.	Assessment system	To evaluate the student's work during the semester, the final rating				
		of their results, basic methods of working with physical equipment and methods for estimating the errors of experiments.				
		have: modern methods of experimental physical research and processing				
		physical content in the applied problems of the future specialty				
		equipment and process the results of these experiments; highlight specific				
		of physical phenomena on the modes of operation of modern technology; plan and conduct the simplest physical experiments using modern				
		television and radio broadcasting systems, etc .; to analyze the influence				
		nature; apply knowledge of physical laws to solve practical problems that arise during the development and operation of radio systems and				
		e relationship of physical phe				
		research.				
		in the field of professional activity; purpose and possibilities of application of the experimental equipment for carrying out physical				
		use, physical principles of modern technological equipment and apparatus in the field of professional activity; purpose and possibilities of				
		application, the essence of physical phenomena, areas of their practical				
		and theories of classical and modern physics and the limits of their				
12.	Learning outcomes of higher education	The study of this discipline gives the student the opportunity to: know: basics of physical laws and fundamental physical concepts, laws				
12	Lagraina autaomas of higher	engineering problems in their specialty. The study of this discipline gives the student the enperturity to:				
		process and analyze the results of scientific research, solve applied				
		Ability to work with scientific equipment and measuring instruments,				
		experimental studies. Ability to learn independently, to master new knowledge				
	learning process	Ability to model physical phenomena, perform theoretical and				
	in higher education in the	Ability to apply knowledge in practical situations				
	skills, understanding, which is acquired by the applicant					
l l	Competences, knowledge,					

- 1. General physics with examples and problems. Part 1. Mechanics. Molecular physics and thermodynamics: textbook. manual./ VO Storozhenko and others. Kharkiv: SMITH Company, 2006 320p.;
- 2..General physics with examples and problems. Part 2. Electricity and magnetism: textbook. manual./ IM Kibets and others. Kharkiv: SMITH Company, 2009-424p.;
- 3. General physics with examples and problems. Part 3, item 1. Optics: textbook. manual / IM Kibets and others. H.: SMITH Company, 2012. 232p.
- 4. General physics with examples and problems. Part 3, item 2. Quantum and atomic physics. Solid state physics. Nuclear physics: textbook / IM Kibets and others. H.: SMITH Company, 2013. 304p.
- 5. A short course in physics. Textbook / IN Kibets et al ..- H .: SMITH Company. 2015.-328p.

Supporting literature

- 1. Collection of tests in the course of physics / O.M. Kovalenko and others.- Kharkiv: KNURE, 2006.-124p.
- 2. Dictionary of physical terms: textbook / T.B. Tkachenko.- Kharkiv: KNURE, 2004.-80p.
- 3. Savelyev IV Course Physics. T.1,2,3.-M.: Nauka, 1989.

Methodical instructions for different types of classes

- 1. Methodical instructions for software in the course of physics (part 1) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013.-152p.
- 2. Methodical instructions for software in physics (part 2) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013.-140p.
- 3. Methodical instructions for laboratory work in physics. Part 1. Mechanics and molecular physics. / Edited by: OV Vyshnivetsky and others. Kharkiv: KNURE, 2009. 84p.
- 3. Methodical instructions for laboratory work in physics. Part 2. Electricity and magnetism. / Edited by: RP Orel and others. Kharkiv: KNURE, 2019. 120p.
- 4. Methodical instructions for laboratory work in physics. Part 3. Optics. Atomic physics and solid state physics / Emphasis. Malik SB etc. Kharkiv: KNURE, 2011.
- 5. Methodical instructions for computer laboratory work in physics./ O.M. Kovalenko and others.- Kharkiv: KNURE, 2006-124p.

Information support:

http://physic.nure.ua

http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefine d

16. Syllabus developer

Associate Professor of Physics Kalinin Vitaly Veniaminovich, vitaly.kalinin@nure.ua