SYLLABUS in the discipline "Physics" for students of the first (bachelor's) level of higher education specialty 122 Computer Science educational and professional program Computer Science and Technology.

1.	Name of the faculty	Faculty of Computer Science
2.	Level of higher education	bachelor
3.	Code and name of the specialty	122 Computer Science
4.	Type and name of educational	Computer Science and Technology
	program	
5.	Code and name of the discipline	Physics
6.	Number of ECTS credits	6
7.	Discipline structure (distribution	2nd semester 180 hours, of which: lectures 40 hours, practical 18 hours,
	by types and hours of study)	laboratory 20 years, consultations 14 hours, independent work 88 hours
8.	The schedule of studying the	1 course, 2 semesters
0	discipline Promonicitos for studying the	Knowledge of the main sections of higher methometics in particular linear
9.	discipline	and vector algebra, differential and integral calculus
10	Discipline abstract	Content module 1 Mechanics
10.	Discipline abstract	Theme 1 Kinematics
		Theme 2 Dynamics of translational motion
		Theme 3. Work and energy
		Theme 4 Dynamics of rotational motion
		Theme 5 Mechanical oscillations
		Content module 2. Electromagnetism
		Theme 1. Electric field in vacuum.
		Theme 2. Electric field in dielectrics and conductors.
		Theme 3. Direct current.
		Theme 4. Magnetic field in vacuum.
		Theme 5. Magnetic field in matter.
		Theme 6. Electromagnetic induction.
		Theme 7. Electromagnetic oscillations.
		Theme 8. Alternating current.
		Theme 9. Waves.
		Content module 3. Wave and quantum optics
		Theme 1. Interference.
		Theme 2. Diffraction.
		Theme 3. Polarization. Dispersion.
		Theme 4. Thermal radiation.
		Theme 5. Photo effect.
11	Competences Imaniladas shills	
11.	understanding which is acquired	Ability to abstract thinking, analysis
	by the applicant in higher	Ability to apply knowledge in practical situations
	education in the learning process	Ability to model physical phenomenal perform theoretical and experimental
	education in the rearring process	studies.
		Ability to learn independently, to master new knowledge
		Ability to work with scientific equipment and measuring instruments,
		process and analyze the results of scientific research
12.	Learning outcomes of higher	The study of this discipline gives the student the opportunity to:
	education	know: basics of physical laws and fundamental physical concepts,
		properties of physical systems, classical and modern physical theories, the
		essence of physical phenomena and areas of their practical application,
		physical principles of modern technology.
		be able to: establish a connection between the facts and bring them into the system apply physical knowledge to solve practical problems, use models
		of physical phenomena of applied problems of the future specialty: to

		analyze the influence of physical phenomena on the modes of operation of			
12	A	modern technology			
13.	Assessment system according to	To evaluate the student's work during the semester, the final			
	each task for passing the exam	rating O_{sem} is calculat	ed as the sum of grades fo	or different types of	
		classes and control	activities, which include	practical classes,	
		laboratory work, indivi	dual calculation task and m	odular testing.	
		The combined	exam is used as a form of i	tinal control for the	
		discipline Physics .	with this type of control,	the final grade is	
		calculated by the form	una: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$,	where O_{sem} – grade	
		for the semester in a 1	00-point system, O_{ex} – grad	le for the exam in a	
		100-point system.			
		The final grade is translated into national and ECTS according			
		to the scale:	Coore on a notional coole	ECTS anala	
		Grade from the	Score on a national scale	ECTS scale	
		discipline		score	
		96-100	5 (perfectly)	А	
		90-95	5 (perfectly)	В	
		75-89	4 (good)	С	
		66-74	3 (satisfactorily)	D	
		60-65	3 (satisfactorily)	E	
		35-59	2 (unsatisfactorily)	FX	
		1-34		F	
14.	The quality of the educational	The content of the discipline can be updated depending on the modern			
15	process Mathedical support	needs of the specialty			
15.	Methodical support	Basic literature	manata VVV Cananal nhusi		
		1. Karmazin VV, Sei	menets v v General physi	cs course Kyrv:	
		2 Sivukhin DV Gener	\mathbf{A} course of physics $\mathbf{M} \cdot \mathbf{S}$	ciance 1000	
		2. SIVUKIIIII DV General course of physicsM .: Science, 1990.			
		and magnetism. textbo	ok manual / IM Kibets and	d others - Kharkiv	
		SMITH Company 2009-424n ·			
		4. General physics w	4 General physics with examples and problems Part 3 item 1		
		Optics: textbook. mar	nual / IM Kibets and oth	ers H.: SMITH	
		Company, 2012 232	э.		
		Supporting literature			
		1. Elementary physics	in examples and problems	: textbook. Manual	
		for preparatory depart	tments / A.D. Tevyashev	et al Kharkov:	
		KNURE, 2005 628p.			
		2. Collection of tests	from the course of physics	/ O.M. Kovalenko	
		and othersKharkiv: K	NURE, 2006124p.	1 1 171 1	
		3. Dictionary of physic	cal terms: textbook / TB Tk	achenko Kharkiv:	
		KNURE, 200480p.	a a suma T 1 2 2 M · Noul	a 1090	
		4. Saveryev IV Physics Mothodical instructio	ns for different types of cl	a, 1909.	
		1 Methodical instructi	ons for software in the cou	rse of physics (part	
		1) / Edited by: VO S	torozbenko and others -	Charkiv: KhNURF	
		2013152n	toroznenko una outero. –1	Markiv, MintOKL,	
		2. Methodical instruction	ons for software in physics	(part 2) / Edited by:	
		VO Storozhenko and o	thers. –Kharkiv: KhNURE.	2013140p.	
		3. Methodical instruct	tions for laboratory work	in physics. Part 2.	
		Electricity and magne	etism. / Edited by: RP (Orel and others	
		Kharkiv: KNURE, 201	9 120p.		
		4. Methodical instruct	tions for laboratory work	in physics. Part 3.	
		Optics. Atomic physics	s and solid state physics / E	Emphasis. Malik SB	

		et alKharkiv: KNURE, 2011.		
		5. Methodical instructions for computer laboratory work in physics./		
		O.M. Kovalenko and others Kharkiv: KNURE, 2006-124p.		
		Information support:		
		http://physic.nure.ua		
		http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefined		
16.	Syllabus developer	Associate Professor of the Department of Meshkov Sergey		
		Nikolaevichsergiy.meshkov@nure.ua		