SYLLABUS

in the discipline "Physics" for students of the first (bachelor's) level of higher education

specialty 125 Cybersecurity educational and professional program of Information Security Management Kharkiv National University of Radio Electronics

1.	Name of the feaulty	Equity of Infocommunications		
	Name of the faculty	Faculty of Infocommunications		
2.	Level of higher education	bachelor		
3.	Code and name of the specialty	125 Cybersecurity		
4.	Type and name of educational program	educational and professional program of Information Security Management		
5.	Code and name of the discipline	Physics		
6.	Number of ECTS credits	6		
7.	Discipline structure (distribution by types and hours of study)	180 hours, of which: lectures 40 hours, practical 18 hours, laboratory 20 hours, consultations 14 hours, independent work 88 hours		
8.	The schedule of studying the discipline	1 course, 1 semesters		
9.	Prerequisites for studying the discipline	Knowledge of the main sections of higher mathematics, in particular linear and vector algebra, differential and integral calculus		
10.	Discipline abstract	Content module 1. Electrostatics and direct current.		
10.	Discipline austract	Theme1. Electric field in vacuum.		
		Theme2. Electric field in dielectrics.		
		Theme3. Conductors in an electric field.		
		Theme4. Electric current.		
		Content module 2. Magnetism. Electromagnetic oscillations and		
		Waves. Thomas Magnetic field in vacuum		
		Theme5. Magnetic field in vacuum.		
		Theme6. Magnetic field in matter.		
		Theme? Floatromagnetic field		
		Theme8. Electromagnetic field.		
		Theme9. Electromagnetic oscillations.		
		Theme10. Alternating current.		
		Content module 3. Waves. Optics.		
		Theme11. Waves		
		Theme12. Geometric optics.		
		Theme13. Wave optics.		
1.1		Theme14. Quantum optics.		
11.	Competences, knowledge,	Competences that provide the study of the discipline:		
	skills, understanding, which	Ability to abstract and logical thinking, analysis		
	is acquired by the applicant	Ability to apply knowledge in practical situations		
	in higher education in the	Ability to model physical phenomena, perform theoretical and		
	learning process	experimental studies.		
		Ability to learn independently, to master new knowledge		
		Ability to work with scientific equipment and measuring instruments,		
		process and analyze the results of scientific research		
12.	Learning outcomes of higher	The study of this discipline gives the student the opportunity to:		
	education	know: basics of physical laws and fundamental physical concepts, laws		
		and theories of classical and modern physics, the essence of physical		
		phenomena, areas of their practical application, physical principles of		
		modern technological equipment and apparatus in the field of professional		

activity; purpose and possibilities of application of the experimental equipment for carrying out physical research.

be able to: analyze the relationship of physical phenomena of different nature; apply physical knowledge to solve practical problems that arise during the development and use of information security systems in information and communication systems; to analyze the influence of physical phenomena on the modes of operation of modern technology; plan and conduct the simplest physical experiments using modern equipment and process the results of these experiments; highlight specific physical content in the applied problems of the future specialty

have: modern methods of physical research, basic methods of working with physical equipment.

13. Assessment system according to each task for passing the exam

To evaluate the student's work during the semester, the final rating O_{sem} is calculated as the sum of grades for different types of classes and control activities, which include practical classes, laboratory work, individual calculation task and modular testing.

The distribution of points for different types of classes / tests is given in the table:

Control measure	Rating O_{sem}	
Lw №1	1-1,5	
Lw №2	1-1,5	
Lw №3	1-1,5	
Lw №4 Control lesson	3-5	
Pc № 1	1,5-2,5	
Pc № 2	1,5-2,5	
Pc №3	1,5-2,5	
Test 1	6-10	
Checkpoint 1	16,5-27	
Lw №5	1-1,5	
Lw №6	1-1,5	
Lw №7 Control lesson	3-5	
Pc № 4	1,5-2,5	
Pc №5	1,5-2,5	
Pc №6	1,5-2,5	
Test 2	6-10	
Checkpoint 2	15,5-25,5	
Lw №8	1-1,5	
Lw №9	1-1,5	
Lw №10 Control lesson	3-5	
Pc № 7	3-5	
Pc №8	1,5-2,5	
Pc № 9	1,5-2,5	
Test 3	6,5-112	
SGT	12-20	
Checkpoint 3	28-47,5	
Total for the semester	60-100	

The combined exam is used as a form of final control for the discipline "Physics". With this type of control, the final grade is calculated by the formula: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$, where O_{sem} grade for the semester in a 100-point system, O_{ex} grade for the exam in a 100-point

		system.				
		The final grade is translated into national and ECTS according to				
		the scale:				
		Grade from the	Score on a national scale	ECTS scale score		
		discipline				
		96-100	5 (perfectly)	A		
		90-95	5 (perfectly)	В		
		75-89	4 (good)	С		
		66-74	3 (satisfactorily)	D		
		60-65	3 (satisfactorily)	E		
		35-59	2 (unsatisfactorily)	FX		
		1-34		F		
14.	The quality of the		ripline can be updated deper	nding on the modern		
1.5	educational process	needs of the specialty				
15.	Methodical support	Basic literature				
		1. General physics with examples and problems. Part 2. Electricity and magnetism: textbook. manual./ IM Kibets and others Kharkiv: SMITH				
		Company, 2009-424p .;	mismi, in inious and other	, Indian, Divilli		
		2. General physics with examples and problems. Part 3, item 1. Optics:				
		textbook / IM Kibets and others H.: SMITH Company, 2012 232p.				
		Supporting literature				
		1. Elementary physics in examples and problems: textbook. Manual for				
		preparatory departments / A.D. Tevyashev et al Kharkov: KNURE,				
		2005 628p.				
		2. Collection of tests from the course of physics / O.M. Kovalenko and others Kharkiv: KNURE, 2006124p.				
		3. Dictionary of physical terms: textbook / TB Tkachenko Kharkiv:				
		KNURE, 200480p.				
		4. Savelyev IV Physics course. T.1,2,3M .: Nauka, 1989.				
		Methodical instructions for different types of classes				
		1. Methodical instructions for software in the course of physics (part 1) /				
		Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013152p.				
		2. Methodical instructions for software in physics (part 2) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013140p.				
		3. Methodical instructions for laboratory work in physics. Part 2.				
		Electricity and magnetism. / Edited by: RP Orel and others Kharkiv:				
		KNURE, 2019 120p.				
		4. Methodical instructions for laboratory work in physics. Part 3. Optics.				
		Atomic physics and solid state physics / Emphasis. Malik SB etc				
		Kharkiv: KNURE, 2011. 5. Methodical instructions for computer laboratory work in physics / O.M.				
		5. Methodical instructions for computer laboratory work in physics./ O.M. Kovalenko and others Kharkiv: KNURE, 2006-124p.				
		Kovaichko and odicis Khaikiv. Kivoke, 2000-124p.				
		Information support:				
		http://physic.nure.ua				
		http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefine				
1.0	0 11 1 1 1	d III C 1 D	. CD1 ' Y7 1 '	01 14 1 1		
16.	Syllabus developer	Head of the Department of Physics Kovalenko Olena Mykolayivna,				
		olena.kovalenko@nure.ua				