SYLLABUS

in the discipline "Physics" for students of the first (bachelor's) level of higher education specialty 172 Telecommunications and radio engineering educational and professional program Intelligent technologies of radio electronics

1.	Name of the faculty	Faculty of Automatics and Computerized Technologies		
2.	Level of higher education	bachelor		
3.	Code and name of the specialty	172 Telecommunications and radio engineering		
4.	Type and name of educational program	Intelligent technologies of radio electronics		
5.	Code and name of the discipline	Фізика		
6.	Number of ECTS credits	10		
7.	Discipline structure	1st semester 180 hours, of which: lectures 38, practical 20, laboratory 20,		
	(distribution by types and	consultations 12, independent work 90		
	hours of study)	2nd semester 120 hours, of which: lectures 26 hours, practical 14 hours,		
	3 7	laboratory 12 hours, consultations 8 hours, independent work 60 hours		
8.	The schedule of studying the discipline	1 course, 1,2 semesters		
9.	Prerequisites for studying the	Knowledge of the main sections of higher mathematics, including		
	discipline	mathematical analysis (differential and integral calculus), analytical		
		geometry and linear algebra (actions with vectors), chemistry (atomic-		
		molecular theory, structure of atoms and molecules)		
10.	Discipline abstract	Content module 1. Physical foundations of mechanics.		
		Theme1. Kinematics.		
		Theme 2. Dynamics of translational motion.		
		Theme 3. Work and energy.		
		Theme 4. Dynamics of rotational motion.		
		Theme 5. Mechanical oscillations.		
		Theme 6. Relativistic mechanics.		
		Content module 2. Electrostatics.		
		Theme 7. Electric field in vacuum.		
		Theme 8. Electric field in dielectrics.		
		Theme 9. Conductors in an electric field.		
		Theme 10. Direct current. Content module 3. Magnetic field.		
		Theme 11. Magnetic field in vacuum.		
		Theme 12. Magnetic field in matter.		
		Theme 13. The phenomenon of electromagnetic induction.		
		Content module 4. Oscillations and waves.		
		Theme 14. Electromagnetic field. Maxwell's equation.		
		Theme 15. Electromagnetic oscillations. Laws of alternating current.		
		Theme 16. Elastic waves.		
		Theme 17. Electromagnetic waves.		
		Content module 5. Optics. Elements of quantum mechanics.		
		Theme 18. Wave optics.		
		Theme 19. Quantum optics.		
		Theme 20. Fundamentals of quantum mechanics.		
		Theme 21. Schrödinger's equation and its application.		
		Content module 6. Elements of quantum theory of the structure of		
		atoms and molecules and solid state physics.		
		Theme 22. Bohr's theory of the structure of the hydrogen atom.		
		Theme 23. Quantum theory of the structure of atoms and molecules.		
		Theme 24. Spontaneous and forced radiation.		

		There 25 Electrical and destricts of motals and agriculturators Contact				
		Theme 25. Electrical conductivity of metals and semiconductors. Contact phenomena.				
11.	Competences, knowledge,	Competences that provide the study of the discipline:				
	skills, understanding, which	Ability to abstract thinking, analysis, the ability to navigate in the flow of				
	is acquired by the applicant	scientific and technical information.				
	in higher education in the	Ability to apply knowledge in practical situations				
	learning process		Ability to model physical phenomena, perform theoretical and			
		experimental studies.				
		Ability to learn independently, to master new knowledge Ability to work with scientific equipment and measuring instruments,				
		process and analyze the results of scientific research, solve applied engineering problems in their specialty.				
12.	Learning outcomes of higher					
12.	education	know: basics of physical laws and fundamental physical concepts, laws				
		and theories of classical and modern physics and the limits of their				
		application, the essence of physical phenomena, areas of their practical				
		use, physical principles of modern technological equipment and apparatus				
		in the field of professional activity; purpose and possibilities of				
		application of the experimental equipment for carrying out physical				
		research.				
		be able to: analyze the relationship of physical phenomena of different				
		nature; apply knowledge of physical laws to solve practical problems that				
			lopment and operation of			
		television and radio broadcasting systems, etc.; to analyze the influence				
		of physical phenomena on the modes of operation of modern technology;				
		plan and conduct the simplest physical experiments using modern equipment and process the results of these experiments; highlight specific				
		physical content in the applied problems of the future specialty				
		have: modern methods of experimental physical research and processing				
		of their results, basic methods of working with physical equipment and				
			he errors of experiments.			
13.	Assessment system	To evaluate the	nester, the final rating			
	according to each task for	O_{sem} is calculated as the sum of grades for different types of classes an				
	passing the exam	control activities, which include practical classes, laboratory work,				
		individual calculation task and modular testing.				
		The combined exam is used as a form of final control for the				
		discipline "Physics". With this type of control, the final grade is calculated				
		by the formula: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$, where O_{sem} grade for the				
		semester in a 100-point system, O_{ex} - grade for the exam in a 100-point				
		system.				
		The final grade is translated into national and ECTS according to				
		the scale:				
		Grade from the	Score on a national scale	ECTS scale score		
		discipline				
		96-100	5 (perfectly)	A		
		90-95	5 (perfectly)	B		
		75-89	4 (good)	С		
		66-74	3 (satisfactorily)	D		
		60-65	3 (satisfactorily)	E		
		35-59	2 (unsatisfactorily)	FX		
		1-34	_ (ansatisfactoring)	F		
14.	The quality of the					
	educational process	needs of the specialty				
15.	Methodical support	Basic literature				
15.	ivietnodical support	Dasic interature				

- 1. General physics with examples and problems. Part 1. Mechanics. Molecular physics and thermodynamics: textbook. manual./ VO Storozhenko and others. Kharkiv: SMITH Company, 2006 320p.;
- 2..General physics with examples and problems. Part 2. Electricity and magnetism: textbook. manual./ IM Kibets and others. Kharkiv: SMITH Company, 2009-424p.;
- 3. General physics with examples and problems. Part 3, item 1. Optics: textbook / IM Kibets and others. H.: SMITH Company, 2012. 232p.
- 4. General physics with examples and problems. Part 3, item 2. Quantum and atomic physics. Solid state physics. Nuclear physics: textbook / IM Kibets and others. H.: SMITH Company, 2013. 304p.
- 5. A short course in physics. Textbook / IN Kibets et al ..- H .: SMITH Company. 2015.-328p.

Supporting literature

- 1. Elementary physics in examples and problems: textbook. Manual for preparatory departments / A.D. Tevyashev et al. Kharkov: KNURE, 2005. 628p.
- 2. Collection of tests from the course of physics / O.M. Kovalenko and others.- Kharkiv: KNURE, 2006.-124p.
- 3. Dictionary of physical terms: textbook / TB Tkachenko.- Kharkiv: KNURE, 2004.-80p.
- 4. Savelyev IV Course Physics. T.1,2,3.-M .: Nauka, 1989.

Methodical instructions for different types of classes

- 1. Methodical instructions for software in the course of physics (part 1) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013.-152p.
- 2. Methodical instructions for software in physics (part 2) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013.-140p.
- 3. Methodical instructions for laboratory work in physics. Part 1. Mechanics and molecular physics. / Edited by: OV Vyshnivetsky and others. Kharkiv: KNURE, 2009. 84p.
- 3. Methodical instructions for laboratory work in physics. Part 2. Electricity and magnetism. / Edited by: RP Orel and others. Kharkiv: KNURE, 2019. 120p.
- 4. Methodical instructions for laboratory work in physics. Part 3. Optics. Atomic physics and solid state physics / Emphasis. Malik SB etc. Kharkiv: KNURE, 2011.
- 5. Methodical instructions for computer laboratory work in physics./ O.M. Kovalenko and others.- Kharkiv: KNURE, 2006-124p.

Information support:

http://physic.nure.ua

http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefine

16. Syllabus developer

Associate Professor of the Department of Physics Rybalka Antonina Ivanovna, antonina.rybalka@nure.ua