SYLLABUS

in the discipline "Physics" for students of the first (bachelor's) level of higher education specialties 152 Metrology and information-measuring equipment educational and professional program Technical examination **Kharkiv National University of Radio Electronics**

1.	Name of the faculty	Faculty of Infocommunications	
2.	Level of higher education	Faculty of Infocommunications bachelor	
3.	Code and name of the specialty	152 Metrology and information-measuring equipment	
4.	Type and name of	educational and professional program Technical examination	
4.	educational program	educational and professional program recinical examination	
5.	Code and name of the	Physics	
	discipline	Thysics	
6.	Number of ECTS credits	10	
7.	Discipline structure	1st semester 150 hours, of which: lectures 30 hours, practical 14 hours,	
	(distribution by types and	laboratory 16 hours, consultations 12 hours, independent work 78 hours	
	hours of study)	2nd semester 150 hours, of which: lectures 30 hours, practical 14 hours,	
		laboratory 16 hours, consultations 12 hours, independent work 78 hours	
8.	The schedule of studying the	1 course, 1,2 semesters	
	discipline		
9.	Prerequisites for studying the	Knowledge of the main sections of higher mathematics, in particular	
	discipline	linear and vector algebra, differential and integral calculus	
10.	Discipline abstract	Module 1	
		Content module 1. Electrostatics and direct current.	
		Theme 1. Electric field in vacuum.	
		Theme 2. Electric field in dielectrics.	
		Theme 3. Conductors in an electric field.	
		Theme 4. Electric current.	
		Content module 2. Magnetism. Electromagnetic oscillations and	
		Waves.	
		Theme 5. Magnetic field in vacuum.	
		Theme 6. Magnetic field in matter. Theme 7. The phenomenon of electromegnetic induction	
		Theme 7. The phenomenon of electromagnetic induction. Theme 8. Electromagnetic field.	
		Theme 9. Electromagnetic oscillations.	
		Theme 10. Alternating current.	
		Module 2	
		Content module 3. Waves. Optics.	
		Theme 1. Waves	
		Theme 2. Geometric optics.	
		Theme 3. Wave optics.	
		Theme 4. Quantum optics.	
		Content module 4. Elements of quantum mechanics and solid state	
		physics.	
		Theme 5. Quantum mechanics.	
		Theme 6. Quantum theory of the structure of atoms and molecules.	
		Theme 7. Spontaneous and forced radiation.	
		Theme 8. Electrical conductivity of metals and semiconductors. Contact	
		phenomena.	
11.	Competences, knowledge,	Competences that provide the study of the discipline:	
		1	
	skills, understanding, which is acquired by the applicant	Ability to abstract and logical thinking, analysis Ability to apply knowledge in practical situations	

	I	I	
	in higher education in the		nenomena, perform theoretical and
	learning process	experimental studies.	anatan many lemanda dan
		Ability to learn independently, to n	quipment and measuring instruments,
		process and analyze the results of s	
12.	Learning outcomes of higher	The study of this discipline gives	
12.	education		d fundamental physical concepts, laws
	Caucation		dern physics, the essence of physical
			cal application, physical principles of
			nd apparatus in the field of professional
			s of application of the experimental
		equipment for carrying out physica	* *
		be able to: analyze the relationsh	ip of physical phenomena of different
		nature; apply physical knowledge	to solve practical problems that arise
			ration of telecommunications systems,
			ications networks, radio systems and
			systems, etc.; to analyze the influence
			des of operation of modern technology;
			physical experiments using modern
		physical content in the applied prob	of these experiments; highlight specific
			al research, basic methods of working
		with physical equipment.	in research, basic methods of working
13.	Assessment system		ork during the semester, the final rating
10.	according to each task for		rades for different types of classes and
	passing the exam		e practical classes, laboratory work,
		individual calculation task and mod	-
			for different types of classes / tests is
		given in the tables:	
		M	odule 1
		Control measure	Rating O_{sem}
		Lw №1	1-2
		Lw №2	1-2
		Lw №3	1-2
		Lw №4 Control lesson	5-8
		Pc №1	2-3
		Pc №2	2-3
		Pc №3	2-3
		Pc №4	2-3
		Test 1	9-15
		Checkpoint 1	25-41 1-2
		Lw №5 Lw №6	1-2
		Lw №7	1-2
		Lw No8 Control lesson	5-8
		Pc №5	2-3
		Pc №6	2-3
		Pc №7	2-3
		Test 2	9-15
		SGT	12-21
		Checkpoint 2	35-59
		Total for the semester	60-100
1	İ		 -

Module 2	
Control measure	Rating O_{sen}
Lw №1	1-2
Lw №2	1-2
Lw №3	1-2
Lw №4 Control lesson	5-8
Pc № 1	2-3
Pc №2	2-3
Pc № 3	2-3
Pc № 4	2-3
Test 1	9-15
Checkpoint 1	25-41
Lw №5	1-2
Lw №6	1-2
Lw №7	1-2
Lw №8 Control lesson	5-8
Pc № 5	2-3
Pc № 6	2-3
Pc № 7	2-3
Test 2	9-15
SGT	12-21
Checkpoint 2	35-59
Total for the semester	60-100

The combined exam is used as a form of final control for the discipline "Physics". With this type of control, the final grade is calculated by the formula: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$, where O_{sem} grade for the semester in a 100-point system, O_{ex} grade for the exam in a 100-point system.

The final grade is translated into national and ECTS according to the scale:

Grade	from	the	Score on a national scale	ECTS scale score
disciplin	e			
96-100			5 (perfectly)	A
90-95			5 (perfectly)	В
75-89			4 (good)	C
66-74			3 (satisfactorily)	D
60-65			3 (satisfactorily)	Е
35-59			2 (unsatisfactorily)	FX
1-34				F

14.	The	quality	of	the
	educa	tional proce	SS	

The content of the discipline can be updated depending on the modern needs of the specialty.

15. Methodical support

Basic literature

- 1. General physics with examples and problems. Part 2. Electricity and magnetism: textbook. manual./ IM Kibets and others. Kharkiv: SMITH Company, 2009-424p.;
- 2. General physics with examples and problems. Part 3, item 1. Optics: textbook / IM Kibets and others. H.: SMITH Company, 2012. 232p. **Supporting literature**

		1. Elementary physics in examples and problems: textbook. Manual for preparatory departments / A.D. Tevyashev et al Kharkov: KNURE, 2005 628p. 2. Collection of tests from the course of physics / O.M. Kovalenko and others Kharkiv: KNURE, 2006124p. 3. Dictionary of physical terms: textbook / TB Tkachenko Kharkiv: KNURE, 200480p. 4. Savelyev IV Physics course. T.1,2,3M .: Nauka, 1989.
		Methodical instructions for different types of classes 1. Methodical instructions for software in the course of physics (part 1) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013152p. 2. Methodical instructions for software in physics (part 2) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013140p. 3. Methodical instructions for laboratory work in physics. Part 2. Electricity and magnetism. / Edited by: RP Orel and others Kharkiv: KNURE, 2019 120p. 4. Methodical instructions for laboratory work in physics. Part 3. Optics. Atomic physics and solid state physics / Emphasis. Malik SB etc Kharkiv: KNURE, 2011. 5. Methodical instructions for computer laboratory work in physics./ O.M. Kovalenko and others Kharkiv: KNURE, 2006-124p. Information support:
		http://physic.nure.ua http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefine
16. Syl	labus developer	d Head of the Department of Physics Kovalenko Olena Mykolayivna, olena.kovalenko@nure.ua