SYLLABUS

in the discipline "Physics"

for students of the first (bachelor's) level of higher education specialty 151 Automation and computer-integrated technologies educational and professional program Automation and computer-integrated technologies, System engineering.

1	N C.1 C 1.			
1.	Name of the faculty	Faculty of Automatics and Computerized Technologies		
2.	Higher education level	Bachelor		
3.	Code and name of the specialty	151 Automation and computer-integrated technologies		
4.	Type and name of	Automation and computer-integrated technologies		
	educational program	System engineering		
5.	Code and name of the	Physics		
	discipline			
6.	Number of ECTS credits	10		
7.	Structure of the discipline	1st semester 150 hours, of which: lectures 36 hours, practical 14 hours,		
	(distribution by types and	laboratory 16 hours, consultations 12 hours, independent work 72 hours		
	hours of study)	2nd semester 150 hours, of which: lectures 36 hours, practical 14 hours,		
		laboratory hours 14, consultations 12 hours, self-work 74 hours		
8.	Schedule of study of the discipline	1st year, 1st and 2nd semester		
9.	Prerequisites for studying	Knowledge of the beginning of mathematical analysis (integral and		
1	the discipline	differential computation), analytical geometry and linear algebra (actions		
	•	with vectors), chemistry (atomic-molecular theory, structure of atoms and		
		molecules).		
10.	Discipline abstract	The main goal of teaching the course is to create for students the		
	•	foundations of a broad theoretical training in the field of physics, which will		
		allow them to navigate the flow of scientific and technical information, to		
		apply new physical principles in the field of technology in their future		
		profession.		
		Content module 1. Classical mechanics.		
		Topic 1. Kinematics.		
		Topic 2. Dynamics of translational motion.		
		Topic 3. Work and energy.		
		Topic 4. Dynamics of rotational motion.		
		Content module 2. Mechanical oscillations. Special theory of relativity.		
		Molecular physics and thermodynamics.		
		Topic 5. Mechanical oscillations.		
		Topic 6. Special theory of relativity.		
		Topic 7. Molecular physics.		
		Topic 8. Thermodynamics.		
		Content module 3. Electrostatics. Electrodynamics.		
		Topic 9. Electric field in vacuum.		
		Topic 10. Electric field in dielectrics.		
		Topic 11. Conductors in an electric field.		
		Topic 12. Direct electric current.		
		Content module 4. Magnetism. Electromagnetic oscillations and waves.		
		Topic 13. Magnetic field in vacuum		
		Topic 14. Electromagnetic induction.		
i		Topic 15. The magnetic field in matter.		
i		Topic 16. Electromagnetic field.		
		Topic 17. Electromagnetic oscillations and alternating current.		
		Topic 18. Elastic waves		
		Topic 19. Electromagnetic waves		

		Content module 5. Optics. Elements of quantum mechanics.		
		Topic 20. Wave optics		
		Topic 21. Quantum optics.		
		Topic 22. Bohr's theory of the structure of the hydrogen atom.		
		Topic 23. Wave theory of microparticles.		
		Topic 24. Schrödinger's equation and its application.		
		Content module 6. Quantum theory of the structure of atoms and		
		molecules. Solid state physics.		
		Topic 25. Quantum theory of the structure of the hydrogen atom.		
		Topic 26. The structure of many electron atoms.		
		Topic 27. Structure of molecules and molecular spectra.		
		Topic 28. Quantum statistics.		
		Topic 29. Zone theory.		
		Topic 30. Contact phenomena.		
11.	Competences, knowledge,	Competence, which provides the study of the discipline:		
	skills, understanding, which	Ability to abstract thinking, analysis		
	is acquired by the applicant	Ability to apply knowledge in practical situations		
	of higher education in the	Ability to model physical phenomena, perform theoretical and experimental		
	process of learning	studies.		
		Ability to learn independently, to master new knowledge		
		Ability to work with scientific equipment and measuring instruments,		
		process and analyze the results of scientific research		
12.	Learning outcomes of	The study of this discipline gives the student the opportunity to:		
	higher education	know: basic concepts, laws and theories that explain physical phenomena,		
		as well as physical quantities by which to describe physical phenomena and		
		processes; the essence of physical phenomena, their mechanisms, causal		
		relationships in physical processes; limits of application of physical laws		
		and theories of physics; theoretical and experimental methods of physical		
		research; physical principles of operation of modern technological		
		equipment and apparatus; purpose and possibilities of application of the		
		experimental equipment for carrying out physical research.		
		be able to: analyze the relationship of physical phenomena of different		
		nature; apply physical knowledge to solve practical problems that arise		
		during the development and operation of modern technology; to analyze the		
		influence of physical phenomena on the modes of operation of modern		
		technology; plan and conduct the simplest physical experiments using		
		modern equipment and process the results of these experiments; highlight		
		specific physical content in the applied problems of the future specialty		
		have: the ability to conduct experimental research with modern methods		
		and process their results, the ability to apply basic knowledge of physics to		
		the extent necessary to provide engineering training in the chosen		
		profession.		
		profession.		

13. Assessment system for each task for passing the test / exam

For assessment the student's work during the semester, the final rating $O_{\it sem}$ is calculated as the sum of grades for different types of classes and control activities, which include practical classes, laboratory work, individual calculation task and modular testing.

The distribution of points for different types of classes / tests is given in the table:

Semester 1

icstci i
Rating O_{sem}
1 2
1 2
1 2
2 4
2 4
2 4
7 10
16 28
7 11
1 2
1 2
2 4
2 4
7 10
20 33
1 2
7 11
2 4
2 4 5 8
7 10
24 39
60 100

Semester 2

Control measure	Rating O _{sem}
Lw №1	1 2
Lw №2	1 2
Lw №3	1 2
Pc №1	2 4
Pc №2	2 4
Pc №3	2 4
Test	7 11
Checkpoint1	16 29
Lw №4	8 12
Lw №5	1 2
Pc №4	2 4
Pc №5	2 4
Test	8 11
Checkpoint2	21 33
Lw №6	1 2
Lw №7	5 9
Pc №6	2 4
Pc №7	2 4

		ICT		5 8	
		Test		8 11	
		Checkpoint	3	23 38	3
		Total for the	e semester	60 10	00
		The combined exam is used as a form of final control for the discipline "Physics". With this type of control, the final grade P_n is calculated by the formula: $P_n = 0, 6 \cdot O_{sem} + 0, 4 \cdot O_{ex}$, where O_{sem} - grade for the semester in a 100-point system, O_{ex} - grade for the exam in a 100-point system. The final grade P_n is translated into national and ECTS according to the scale:			
		Assessment in the discipline	Assessmo	ent on a national scale	Assessment on the ECTS scale
		96-100	5 (exceller	nt)	A
		90-95	5 (exceller	nt)	В
		75-89	4 (good)		С
		66-74	3 (satisfac	tory)	D
		60-65	3 (satisfac	tory)	E
		35-59	2 (unsatisf	factory)	FX
		1-34	2 (diisatisi	actory)	F
14.	The quality of the educational process	The content of the discipline can be updated depending on the modern needs of the specialty.			nding on the modern
15.	Methodical support	Basic Literature: 1. Zagal'na fizyka z prykladamy i zadachamy. Chastyna 1. Mehanika. Molekuljarna fizyka ta termodynamika: navch. Posibnyk/ V.O. Storozhenko ta in Harkiv: TOV «Kompanija SMIT», 2006. – 320 s. 2. Zagal'na fizyka z prykladamy i zadachamy. Chastyna 2. Elektryka ta magnetyzm: navch. posibnyk. / I.M. Kibec' ta in Harkiv: «Kompanija SMIT», 2009 – 424s.; 3. Zagal'na fizyka z prykladamy i zadachamy. Chastyna 3, t.1. Optyka: navch.posibnyk / I.M. Kibec' ta in. – H.:Kompanija SMIT, 2012. – 232s. 4. Zagal'na fizyka z prykladamy i zadachamy. Chastyna 3, t.2. Kvantova ta atomna fizyka. Fizyka tverdogo tila. Jaderna fizyka: navch.posibnyk / I.M.Kibec' ta in. –H.:Kompanija SMIT, 2013.–304s Additional literature: 1. Elementarnaja fyzyka v prymerah y zadachah: ucheb. Posobye dlja podgotovytel'nih otdelenyj/ A.D. Tevjashev y dr. – Har'kov: HNURE, 2005. – 628s. 2. Zbirnyk testiv z kursu fizyky/ O.M. Kovalenko ta in Harkiv: HNURE,2006124s. 3. Slovnyk fizychnyh terminiv: navchdovidkovyj posibnyk/ T.B. Tkachenko Harkiv: HNURE,200480s. 4. Savel'ev Y.V.Kurs fyzyky. T.1,2,3M.:Nauka, 1989.			
					r'kov: HNURE, 2005. nko ta in Harkiv: idkovyj posibnyk/
		Methodical instructions 1. Metodychni vkazivk V.O.Storozhenko ta in. – 2. Metodychni vkaziv V.O.Storozhenko ta in. – 3. Metodychni vkazivk Mehanika ta molekuljara	y do PZ z Harkiv:HNI ky do P Harkiv:HNI y do labor	kursu fizyky (c URE, 2013152s. Z z fizyky URE, 2013140s. atornyh robit z	(chastyna2)/Uporjad.: fizyky. Chastyna 1.

		Harkiv: HNURE, 2009. – 84s.
		4. Metodychni vkazivky do laboratornyh robit z fizyky. Chastyna 2.
		Elektryka i magnetyzm. / Uporjad.: R. P. Orel ta in. – Harkiv: HNURE,
		2019. – 120s.
		5. Metodychni vkazivky do laboratornyh robit z fizyky. Chastyna 3.
		Optyka. Atomna fizyka ta fizyka tverdogo tila / Upor. Malyk S.B. ta in
		Harkiv: HNURE, 2011.
		6. Metodychni vkazivky do komp'juternyh laboratornyh robit z fizyky./
		O.M. Kovalenko ta in Harkiv:HNURE, 2006-124s.
		Information support:
		http://physic.nure.ua
		http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefined
16.	Syllabus developer	Associated Professor of Physics Department Orel Roman Petrovich,
		roman.orel@nure.ua