SYLLABUS

in the discipline "Physics" for students of the first (bachelor's) level of higher education specialty 124 System Analysis educational and professional program System Analysis Kharkiv National University of Radio Electronics

1	Nome of the fearly	Information and Analytical Technologies and Management	
1.	Name of the faculty	Information and Analytical Technologies and Management	
2.	Higher education level	Bachelor	
3.	Code and name of the	124 System Analysis	
4	specialty		
4.	Type and name of	System Analysis	
_	educational program		
5.	Code and name of the	Physics	
	discipline		
6.	Number of ECTS credits	6	
7.	Discipline structure	1st semester 90 hours, of which: lectures 18 hours, practical 6 hours,	
	(distribution by types and	laboratory 12 hours, consultations 6 hours, self-work 48 hours	
	hours of study)	2nd semester 90 hours, of which: lectures 18 hours, practical 10 hours,	
		laboratory 8 hours, consultations 8 hours, self-work 46 hours	
8.	Schedule of study of the	1st year, 2nd semester	
	discipline		
9.	Prerequisites for studying	Knowledge of the beginning of mathematical analysis (integral and	
	the discipline	differential computation), analytical geometry and linear algebra (actions	
		with vectors), chemistry (atomic-molecular theory, structure of atoms and	
		molecules).	
10.	Discipline abstract	The main purpose of teaching the course is to create in students the basics	
		of broad theoretical training in physics, which will allow them to navigate	
		in the flow of scientific and technical information, to apply new physical	
		principles in engineering in their future profession.	
		Module 1	
		Content module 1. Mechanics.	
		Topic 1. Kinematics.	
		Topic 2. Dynamics of translational motion.	
		Topic 3. Work and energy.	
		Content module 2. Electricity.	
		Topic 4. Electric field in vacuum.	
		Topic 5. Gauss's theorem.	
		Topic 6. Electric field in dielectrics.	
		Topic 7. Conductors in an electric field.	
		Topic 8. Direct electric current.	
		Topic 9. Ohm's law, Kirchhoff's rules, Joule-Lenz's law.	
		Module 2	
		Content module 3 Magnetism.	
		Topic 11. Magnetic field in vacuum.	
		Topic 12. Electromagnetic induction.	
		Topic 13. Magnetic field in matter.	
		Topic 14. Electromagnetic field.	
		Topic 15. Electromagnetic oscillations and alternating current.	
		Content module 4. Wayes and optics. Elements of quantum mechanics.	
		Topic 16. Electromagnetic waves.	
		Topic 17. Wave optics.	
		Topic 18. Quantum optics.	
		Topic 19. Laws of radiation ABB.	
11	Competences knowledge	Competence which provides the study of the discipline	
11.	skills understanding which	Ability to abstract thinking analysis	
1	since summing, which	1	

	is acquired by the applicant of higher education in the process of learning	Ability to apply knowled Ability to model physica studies. Ability to learn independ Ability to work with s process and analyze the t	ge in practical situations I phenomena, perform theoreti lently, to master new knowledg scientific equipment and me results of scientific research	ical and experimental ge asuring instruments,
12.	Learning outcomes of higher education	The study of this discipline gives the student the opportunity to: <u>know</u> : basic concepts, laws and theories that explain physical phenomena, as well as physical quantities by which to describe physical phenomena and processes; the essence of physical phenomena, their mechanisms, causal relationships in physical processes; limits of application of physical laws and theories of physics; theoretical and experimental methods of physical equipment and apparatus; purpose and possibilities of application of the experimental equipment for carrying out physical research. <u>be able to</u> : analyze the relationship of physical phenomena of different nature; apply physical knowledge to solve practical problems that arise during the development and operation of modern technology; to analyze the influence of physical phenomena on the modes of operation of modern technology; plan and conduct the simplest physical experiments using modern equipment and process the results of these experiments; highlight specific physical content in the applied problems of the future specialty <u>have</u> : the ability to carry out experimental research with modern methods and process their results, the ability to apply basic knowledge of physics to the extent necessary to provide engineering training in the chosen profession.		
13.	Assessment system for each task for passing the test / exam	For assessment the O_{sem} is calculated as the control activities, whice individual calculation tass The combined exam "Physics". With this type formula: $P_n = 0, 6 \cdot O_{sem}$ a 100-point system, O_{ex} - The final grade P_n the scale:Assessment in the discipline96-100 90-95 75-89 66-74 60-65 35-59 1-34	student's work during the sem e sum of grades for different ch include practical classes is and modular testing. In is used as a form of final con- e of control, the final grade P_{r} $+0, 4 \cdot O_{ex}$, where O_{sem} - grade or grade for the exam in a 100-p- is translated into national and Assessment on a national scale 5 (excellent) 5 (excellent) 4 (good) 3 (satisfactory) 2 (unsatisfactory)	Assessment on the ECTS scale A B C D E FX F

	1	
14.	The quality of the	The content of the discipline can be updated depending on the modern
	educational process	needs of the specialty.
	L L	
15.	Methodical support	Basic Literature:
		1. Zagal'nafizyka z prykladamyizadachamy. Chastyna 1. Mehanika.
		Molekuliarnafizuka ta termodynamika: navch Posihnyk/ VO Storozbanko
		Wolekuljamanzyka ta termodynamika. naven. i osionyk/ v.O. Storoznenko
		ta inHarkiv: TOV «Kompanija SMIT», 2006. – 320 s.
		2. Zagal'nafizyka z prykladamyizadachamy. Chastyna 2. Elektryka ta
		magnetyzm: navch. posibnyk. / I.M. Kibec' ta in Harkiv: «Kompanija
		SMIT» $2009 - 424s$.
		3 Zagal'nafizyka z prykladamyizadachamy Chastyna 3 t 1 Optyka:
		s. Zagar nanzyka z prykladamyrzadachamy. Chastyna 5, t.1. Optyka.
		1 aventpositive / 1.141. Kidee ta in. = 11Kompanija Siviri 1, 2012. = 2528.
		4. Zagal nafizyka z prykladamyizadachamy. Chastyna 3, t.2. Kvantova ta
		atomnafizyka. Fizykatverdogotila. Jadernafizyka: navch.posibnyk /
		I.M.Kibec' ta in. –H.:Kompanija SMIT, 2013.–304s
		Additional literature
		1 Elementerneiefuzuke u prumerah u zedecheh: ueheh
		T. Elementainajaryzyka v prymeran y zauachan. ucheb.
		Posobyedijapodgotovyteľnihotdelenýj/ A.D. Tevjasnev y dr. – Harkov:
		HNURE, 2005 628s.
		2. Zbirnyktestiv z kursufizyky/ O.M. Kovalenko ta inHarkiv:
		HNURE,2006124s.
		3. Slovnykfizychnyhterminiy: navchdovidkovyiposibnyk/
		T B. Tkachenko -Harkiv: HNURE 2004 -80s
		A Sovol'ovY V Kursfyzyky T 1 2 3 M Nouko 1080
		4. $Saverev 1.v.Kursryzyky. 1.1,2,3ivirvauka, 1909.$
		Methodical instructions to take up views:
		1. Metodychnivkazivky do PZ z kursufizyky (chastyna
		1)/Uporjad.:V.O.Storozhenko ta in. –Harkiv:HNURE, 2013152s.
		2. Metodychnivkazivky do PZ z fizyky
		(chastyna2)/Uporiad.:V.O.Storozhenko ta in. –Harkiy:HNURE, 2013140s.
		3 Metodychniykaziyky do laboratornyhrobit z fizyky Chastyna 1
		Mehonika ta molakuliarmafizuka / Unoriad : O.V. Vushniyaa'kui ta in
		Menanika ta molekuljananzyka. / Oporjau O.v. vysimivečkyj ta m. –
		Harkiv: HNURE, 2009. – 84s.
		4. Metodychnivkazivky do laboratornyhrobit z fizyky. Chastyna 2.
		Elektrykaimagnetyzm. / Uporjad.: R. P. Orel ta in Harkiv: HNURE,
		2019. – 120s.
		5. Metodychnivkazivky do laboratornyhrobit z fizyky. Chastyna 3. Optyka.
		Atomnafizyka ta fizykatverdogotila / Upor Malyk SB ta in Harkiy.
		HNURE 2011
		Motodyshnivkogivly, do komp ² istom-hisk-setom-huskit - f ² -1-/
		6. Metodychnivkazivky do komp juternyniaboratornynrobit z fizyky./
		O.M. Kovalenko ta in Harkiv:HNURE, 2006-124s.
		Information support:
		http://physic.nure.ua
		http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefined
		http://www.oguenare.au/http://buodi/fibioii=2-terever/or=occquery=underined
16	Svillabua davalarar	Associated Durchasson of Division Department Alexander Marceley
16.	Syllabus developer	Associated Professor of Physics Department Alexander Myagky
1		aleksandr.mjagky@nure.ua