SYLLABUS

in the discipline "Physics"

for students of the first (bachelor's) level of higher education
specialty 152 Metrology and information-measuring equipment
educational and professional program Optical information and laser systems engineering

1.	Name of the faculty	Faculty of Electronic and Biomedical Engineering
2.	Level of higher education	bachelor
3.	Code and name of the	152 Metrology and information-measuring equipment
	specialty	
4.	Type and name of educational program	Optical information and laser systems engineering
5.	Code and name of the discipline	Physics
6.	Number of ECTS credits	6
7.	Discipline structure (distribution by types and hours of study)	1st semester 90 hours, of which: lectures 20 hours, practical 10 hours, laboratory hours 12, consultations 6 hours, independent work 42 hours 2nd semester 90 hours, of which: lectures 20 hours, practical 8 hours, laboratory 8 hours, consultations 6 hours, independent work 48 hours
8.	The schedule of studying the discipline	1 course, 1,2 semesters
9.	Prerequisites for studying the discipline	Knowledge of the main sections of higher mathematics, including mathematical analysis (differential and integral calculation), analytical geometry and linear algebra (actions with vectors), chemistry (atomic-molecular theory, structure of atoms and molecules).
10.	Discipline abstract	Content module 1. Physical foundations of mechanics.
		Theme 1. Kinematics. Theme 2. Dynamics of translational motion. Theme 3. Work and energy. Theme 4. Dynamics of rotational motion. Theme 5. Mechanical oscillations. Content module 2. Electrostatics. Theme 6Electric field in vacuum. Theme 7. Electric field in dielectrics. Theme 8. Conductors in an electric field.
		Theme 9. Direct current.
		Content module 3. Magnetic field.
		Theme 10. Magnetic field in vacuum.
		Theme 11. Magnetic field in matter.
		Theme 12. The phenomenon of electromagnetic induction.
		Theme 13. Electromagnetic field. Theme 14. Electromagnetic oscillations and alternating current
		Content module4. Waves. Optics. Elements of quantum mechanics
		and solid state physics
		Theme 15. Waves.
		Theme 16. Wave optics.
		Theme 17. Quantum optics.
		Theme 18. Quantum mechanics.
		Theme 19. Quantum theory of the structure of atoms and molecules. Theme 20. Band theory of electrical conductivity of solids.
11.	Competences, knowledge,	Competences that provide the study of the discipline:
	skills, understanding, which is acquired by the applicant in	Ability to abstract thinking, analysis, the ability to navigate in the flow of scientific and technical information.

	higher education in the	Ability to	apply knowledge in practical	situations	
	learning process		nodel physical phenomena, p		and experimental
	rearming process	studies.	nodor priy srear priemornena, p		and experimental
			earn independently, to maste	er new knowledge	
			work with scientific equip		ing instruments.
			nd analyze the results of		
		_	g problems in their specialty		,
12.	Learning outcomes of higher				tunity to:
	education	_	ics of physical laws and fund		•
			classical and modern physic		
			e of physical phenomena, a		
			of modern technological equ		
		profession	al activity; purpose and p	ossibilities of app	olication of the
		experimental equipment for carrying out physical research. be able to: analyze the relationship of physical phenomena of			
					ena of different
		nature; app	oly knowledge of physical la	ws to solve practic	al problems that
			g the development and opera		
			proadcasting systems, etc.;	•	A •
			a on the modes of operation		
			e simplest physical experin	_	
			results of these experiments		physical content
			ied problems of the future sp		
			ern methods of experimental		
			ts, basic methods of work		equipment and
13.	Assessment system according	methods for estimating the errors of experiments.			al mating O
13.	to each task for passing the	c sem			- 50
	exam				
	Chain	testing.	which include practical cla	sses, laboratory wo	ork and modular
		_	ution of points for different	vnes of classes / tes	ts is given in the
		table:	ation of points for different	ypes of classes / tes	its is given in the
		Semester 1			
			Control measure	Rating O_{sem}	
			Lw №1	2 4	
			Lw №2	2 4	
			Lw №3 Control lesson	5 10	
			Pc №1	4 7	
			Pc №2	4 7	
			Pc №3	4 7	
			Test	11 14	
			Checkpoint 1	32 53	
			Lw №4	2 4	
			Lw №5	2 4	
			Lw №6 Control lesson	5 10	
			Pc № 4	4 7	
			Pc № 5	4 7	
			Test	11 15	
			Checkpoint 2	28 47	
			Total for the semester	60 100	
Ì		l			

Semester 2

Control measure	Ra	ting C	sem
Lw №1	3		5
Lw №2	3		5
Pc №1	4		7
Pc №2	4		7
Test	10		19
Checkpoint 1	24		43
Lw №3	3		5
Lw №4 Control lesson	13		18
Pc №3	4		7
Pc №4	4		7
Test	12		20
Checkpoint 2	36		57
Total for the semester	60		100

As a form of final control for the discipline "Physics" credit is used in semester 1. The final grade is determined as the number of points received by the applicant for education for completing control activities during the semester.

The combined exam is used as a form of final control for the discipline "Physics" in semester 2. With this type of control, the final grade is calculated by the formula: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$, where O_{sem} – grade for the semester in a 100-point system, O_{ex} – grade for the exam in a 100-point system.

The final grade is translated into national and ECTS according to the scale:

Grade from the discipline	Score on a national scale		ECTS scale score
-	exam	credit	
96-100	5 (perfectly)	passed	A
90-95	5 (perfectly)	_	В
75-89	4 (good)		С
66-74	3 (satisfactorily)		D
60-65	3 (satisfactorily)		Е
35-59	2 (unsatisfactorily)	not passed	FX
1-34			F

14. The quality of the educational process

The content of the discipline can be updated depending on the modern needs of the specialty.

15. Methodical support

Basic literature

- 1. General physics with examples and problems. Part 1. Mechanics. Molecular physics and thermodynamics: textbook. manual./ VO Storozhenko and others. Kharkiv: SMITH Company, 2006 320p.;
- 2..General physics with examples and problems. Part 2. Electricity and magnetism: textbook. manual./ IM Kibets and others. Kharkiv: SMITH Company, 2009-424p.;
- 3. General physics with examples and problems. Part 3, item 1. Optics: textbook. manual / IM Kibets and others. H.: SMITH Company, 2012. 232p.
- 4. General physics with examples and problems. Part 3, item 2. Quantum and atomic physics. Solid state physics. Nuclear physics: textbook / IM Kibets and others. H.: SMITH Company, 2013. 304p.

		5. A short course in physics. Textbook / IN Kibets et al H .: SMITH Company. 2015328p.
		Supporting literature 1. Collection of tests in the course of physics / O.M. Kovalenko and others Kharkiv: KNURE, 2006124p. 2. Dictionary of physical terms: textbook / T.B. Tkachenko Kharkiv: KNURE, 200480p. Methodical instructions for different types of classes 1. Methodical instructions for software in the course of physics (part 1) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013152p.
		 Methodical instructions for software in physics (part 2) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013140p. Methodical instructions for laboratory work in physics. Part 1. Mechanics and molecular physics. / Edited by: OV Vyshnivetsky and others Kharkiv:
		KNURE, 2009 84p. 3. Methodical instructions for laboratory work in physics. Part 2. Electricity and magnetism. / Edited by: RP Orel and others Kharkiv: KNURE, 2019 120p.
		4. Methodical instructions for laboratory work in physics. Part 3. Optics. Atomic physics and solid state physics / Emphasis. Malik SB etc Kharkiv: KNURE, 2011.
		5. Methodical instructions for computer laboratory work in physics./ O.M. Kovalenko and others Kharkiv: KNURE, 2006-124p.
		Information support:
		http://physic.nure.ua http://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefine d
16.	Syllabus developer	Associate Professor of Physics Kalinin Vitaly Veniaminovich, vitaly.kalinin@nure.ua