SYLLABUS

in the discipline "Physics"

for students of the first (bachelor's) level of higher education specialty F4 System Analysis and Data Science educational and professional program System Analysis

Kharkiv National University of Radio Electronics

1.	Name of the faculty	Information and Analytical Technologies and Management	
2.	Level of higher education	bachelor	
3.	Code and name of the specialty	F4 System Analysis and Data Science	
4.	Type and name of educational program	System Analysis	
5.	Code and name of the discipline	Physics	
6.	Number of ECTS credits	6	
7.	Discipline structure (distribution by types and hours of study)	1st semester 90 hours, of which: lectures 20 hours, practical 10 hours, laboratory 12 hours, consultations 6 hours, independent work 42 hours 2nd semester 90 hours, of which: lectures 20 hours, practical 8 hours, laboratory 8 hours, consultations 8 hours, independent work 46 hours	
8.	The schedule of studying the discipline	1 course; 1,2 semesters	
9.	Prerequisites for studying the discipline	List of disciplines that should be studied earlier: beginning of mathematical analysis (integral and differential calculus), analytical geometry and linear algebra (operations with vectors), chemistry (atomic-molecular theory, structure of atoms and molecules)	
10.	Discipline abstract	The main goal of teaching the course is to create in students the foundations of broad theoretical training in the field of physics, which will allow them to navigate the flow of scientific and technical information, apply new physical principles in the fields of technology in their future specialty. Module 1 (1st semester) Content module 1. Mechanics. Topic 1. Kinematics. Topic 2. Dynamics. Topic 3. Work and energy. Content module 2. Electricity. Topic 4. Electric field in vacuum. Topic 5. Gauss's theorem. Topic 6. Electric field in dielectrics. Topic 7. Conductors in an electric field. Topic 8. Direct electric current. Topic 9. Ohm's law, Kirchhoff's rules, Joule-Lenz law. Module 2 (2nd semester) Content module 3. Magnetism. Topic 10. Magnetic field in vacuum. Topic 11. Electromagnetic induction.	

		Topic 12. Magnetic field in matter.
		Topic 13. Electromagnetic field.
		Topic 14. Electromagnetic oscillations and alternating current.
		Content module 4. Waves and optics. Elements of quantum
		mechanics.
		Topic 15. Electromagnetic waves.
		Topic 16. Wave optics.
		Topic 17. Quantum optics.
		Topic 18. Laws of thermal radiation
11.	Competences, knowledge,	Competencies provided by the study of the discipline:
11.	skills, understanding,	1. The ability to use and adapt mathematical theories, methods and
	which is acquired by the	techniques to prove mathematical statements and theorems.
	applicant in higher	2. The ability to abstract thinking, analysis and synthesis.
		, , , , , , , , , , , , , , , , , , , ,
	education in the learning	3. The ability to model various phenomena, perform theoretical and
	process	experimental research.
		4. The ability to independently learn, master new knowledge
		5. The ability to process and analyze the results of scientific research
		6. Knowledge and understanding of the subject area and
		understanding of professional activity.
		7. The ability to apply knowledge in practical situations.
		8. The ability to make informed decisions.
		9. The ability to communicate with representatives of other
		professional groups of different levels (with experts from other fields
		of knowledge/types of economic activity).
		10. Carrying out safe activities.
		11. The ability to work autonomously.
		12. The ability to work in a team.
12.	Learning outcomes of	As a result of studying the discipline, applicants must:
	higher education	know: basic concepts, laws and theories that explain physical
	C	phenomena, as well as physical quantities with which physical
		phenomena and processes are described; the essence of physical
		phenomena, their mechanisms, cause-and-effect relationships in
		physical processes; the limits of application of physical laws and
		theories of physics; theoretical and experimental methods of physical
		research;
		be able to: apply knowledge of the basic forms and laws of abstract-
		logical thinking, the foundations of the methodology of scientific
		knowledge, forms and methods of extracting, analyzing, processing
		and synthesizing information in the subject area of computer science;
		analyze the relationship of physical phenomena of various nature;
		plan and conduct the simplest physical experiments using modern
		equipment and process the results of these experiments; highlight
		specific physical content in applied problems of the future specialty;
		have: the ability to abstract thinking, analysis and synthesis; the
		ability to apply knowledge in practical situations; the ability to
		identify, pose and solve problems in a professional direction; the
		ability to mathematically formulate and investigate continuous and
		discrete mathematical models, justify the choice of methods and
		approaches for solving theoretical and applied problems in the field

		of computer science, analysis	is and interpretation; t	he ability to learn
		and master modern knowled	-	•
13.	Assessment system according to each task for passing the exam			e control and the rol. Inderstanding and at during lectures, ents' discussion of certain theoretical cal and laboratory rming laboratory the results of their ctical classes) and ssroom work). It ion of educational fodule control is acational process. In points. Module of computer testing reticular, computer testing to the basis of eight) based on the facurricular work, are repeated at least 60 and rating score of classes and repeated to the score of classes and
		Type of lesson / test	Rating O_{sem}	
		laboratory work	$0,25$ O_{sem}	
		practical classes	0,25 O _{sem}	
		Checkpoint 1		
		laboratory work	15 25	
		practical classes	15 25	
			30 50	
ĺ		Charlengint 2		

Checkpoint 2 laboratory work practical classes

Final for the semester

•••

The combined exam is used as a form of final control for the discipline "Physics". With this type of control, the final grade is calculated by the formula: $P_n = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$, where $O_{sem} - 0.6 \cdot O_{sem} = 0.6 \cdot O_{sem} + 0.4 \cdot O_{ex}$ grade for the semester in a 100-point system, O_{ex} – grade for the exam in a 100-point system. Required knowledge to obtain a positive assessment. 1. Basic concepts, laws and models of mechanics, electricity, magnetism, oscillations, waves, quantum physics, statistical physics, thermodynamics, atomic nucleus physics. 2. Limits of application of physical concepts and laws. 3. Principles of construction of physical models and their use. Required skills to obtain a positive assessment. 1. Calculation of parameters of physical objects, using basic concepts, laws and models of mechanics, electricity, magnetism, oscillations, waves, quantum physics and thermodynamics to solve practical problems. 2. Conducting the simplest physical experimental studies. 3. Processing the results of experimental studies, using methods for evaluating the results of experiments and calculating their errors. The final grade is translated into national and ECTS according to the scale: **ECTS** Grade from Score on a national scale the scale credit exam discipline score 96-100 5 (perfectly) passed A 90-95 5 (perfectly) В 75-89 4 (good) C 66-74 3 (satisfactorily) D 3 (satisfactorily) 60-65 E 35-59 FX not passed 1-34 (unsatisfactorily) 14. principles of The quality the Adherence the academic to integrity educational process (http://lib.nure.ua/plagiat). Timely updating of the content of the discipline depending on the modern needs of the specialty 15. Methodical support **Basic literature** 1. General Physics with Examples and Problems. Mechanics: A Textbook for Students of All Specialties and Forms of Study [Electronic Resource] / Compiled by: A.I. Rybalka et al. – Kharkiv: KhNURE, 2024. – 220 p. 2. General physics with examples and problems. Part 2. Electricity and magnetism: textbook. manual./ IM Kibets and others. - Kharkiv: SMITH Company, 2009 - 424p .; 3. General physics with examples and problems. Part 3, item 1. Optics: textbook / IM Kibets and others. - H.: SMITH Company, 2012. - 232p. **Supporting literature** 1. Collection of tests from the course of physics / O.M. Kovalenko and others.- Kharkiv: KNURE, 2006. –124s.

		 Dictionary of physical terms: textbook / TB Tkachenko Kharkiv: KNURE, 200480p. Methodical instructions for different types of classes Methodical instructions for software in the course of physics (part 1) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013152p. Methodical instructions for software in physics (part 2) / Edited by: VO Storozhenko and others. –Kharkiv: KhNURE, 2013140p. Methodical instructions for laboratory work in physics. Part 2. Electricity and magnetism. / Edited by: RP Orel and others
		Kharkiv: KNURE, 2019 120p. 4. Methodical instructions for laboratory work in physics. Part 3. Optics. Atomic physics and solid state physics / Emphasis. Malik SB etc Kharkiv: KNURE, 2011. 5. Methodical instructions for computer laboratory work in physics./ Edited by: R. P. Orel, O. M. Kovalenko, A. I. Rybalka and others - Kharkiv: Khnure, 2021 132 Information support: 1. https://physic.nure.ua. 2. https://catalogue.nure.ua/knmz/?subdivision=24&level=0&query=undefined
16.	Syllabus developer	Professor of the Department of Physics Volodymyr Oleksandrovych Storozhenko volodymyr.storozhenko@nure.ua